BODE Conference 13 February 2023 Phoenix, AZ

LABORATORY FOR FORENSIC TECHNOLOGY DEVELOPMENT & INTEGRATION

Catherine M. Grgicak

The probability of the number of contributors given forensic DNA data

Massachusetts Institute of Technology

DNA MIXTURES AND NUMBER OF CONTRIBUTORS (NOC)

D3S 15 1668	1358 16 3163 15	vWA 18 16 1 ²¹⁶⁶	Data	NoC	WoE
G1=1 G2=1 AMEL	800 6 5,16 G1=1 5,16 G2=1 D8S1179 12	41 15,18 16,18 D21S11	D22S1045 15 11 ²⁹⁹⁶ 17 1067 841	D5S818 10 11 3004 1384 13 .351	D13S317 12 11 5081 3025
3628 3122	1900 11 13 957 1203 14 860	29 31 2485 1839 31.2 1558	G1=15,17 G2=11,15	G1=10,10 G2=11,13	G1=11,12 G2=12,12
G1=X,Y G2=X,Y	G1=11,13 G2=12,14	G1=29,31,2 G2=29,31	D10S1248	D1S1656	D12S391 18
D2S441 11 10 J ²⁸⁶⁸	D19S433	TH01 9.3	12 ²⁹⁹⁵ 2568 1458	11 2390 1949	17 ²²⁹⁸ 1924 1379 ²²⁸¹ 1172
1157	$11 \ 13 \ 14 \ 904 \ 199 \ 308 \ 148 \ 904$	7 9 1357 541 418	G1=14,15 G2=12,14	G1=16,16 G2=11,12	G1=18,19 G2=17,24
G1=10,11 G2=11,11	G1=14,16 G2=11,13	G1=7,9.3 G2=9,9.3	PROVEDIt: 31_	32-1;1-1M2a-0.126GF	01-17,24

NOCIT GIVES P(N=n|H_D,I,E) FOR ALL N Why $P(N=n|H_d, I, E)$? The LR is the weighted average of the n-specific LRs, for all n $\mathbf{LR} = \sum \left(\frac{P(E|H_p, N = n, I)}{P(E|H_d, N = n, I)} P(N = n|H_d, I, E) \right)$ Contents lists available at ScienceDirect Forensic Science International: Genetics journal homepage: www.elsevier.com/locate/fsiger Research paper Contributors are a nuisance (parameter) for DNA mixture evidence evaluation **NOCIt** K. Slooten^{a,*}, A. Caliebe^b + $LR^{E|n=2,I}P_{n=2|E,I}$ + $LR^{E|n=3,I}P_{n=3|E,I}$ LR =

NOClt, therefore, meets 2 aims:

- Narrows *n* ranges by informing what n are associated with negligible P_{n|E,I}
- Supports a process that does not apply default n or automatic $P_{n|E,I}$

NOCIT DETERMINES P(N=n|H_D,I,E) Why $P(N=n|H_{dr}I,E)$ aka $P_{n|E,I}$? Contexts between LR^{E|n,I} and P_{n|E,I} are consistent $LP_{n=1|E,I} + LR^{E|n=2,I}P_{n=2|E,I} + LR^{E|n=3,I}P_{n=3|E,I} + LR^{E|n=4,I}P_{n=4|E,I} + L$ $LR = LR^E$ *I*=assumed $24 \qquad LR^{E|n=3,I}$ person $\mathbf{LR} = LR^{E|n=2,I}P_{n=2|E,I} + LR^{E|n=3,I}P_{n=3|E,I}$ $LR^{E|n=2,I}$ n E, I $= 10^{-13}0.1 + 10^{24}0.9$ $= 10^{24}$ n/a 1 3 5 6 2 4 n NOCIt, therefore, meets a 3rd aim: D8S1179 D5S818 12 **1900** 10 Determines $P_{n|E,I}$ using the *same* context as assigned to $LR^{E|n,I}$ 11 ³⁰⁰⁴1384 13 860 .351 G1=10,10 G1=11.13 G₂=11,13 G₂=12,14

NOCIT DETERMINES P(N=n|H_D,I,E)

What is P(*N*=*n*|*H*_d, *I*, *E*)?

It is the posterior probability of n contributors given the data and a

context

NOCIT DETERMINES $P(N=n|H_D,I,E)$ What is P(N=n|E) graphically?

$$P(N = n|E) = \frac{P(E|N = n) \cdot P(N = n)}{\sum_{n} P(E|N = n) \cdot P(N = n)}$$

n

n

What is P(N=n|E) numerically?

$$P(N = n|E) = \frac{P(E|N = n) \cdot P(N = n)}{\sum_{n} P(E|N = n) \cdot P(N = n)}$$

Illustrative example:

n	P(N = n)	P(E N = n)	$P(E N = n) \cdot P(N = n)$	P(N = n E)
0	1/7=0.143	0.00001	0.00000143	=0.0000014/0.0159 =0.00009
1	0.143	0.01	0.00143	0.09
2	0.143	0.1	0.0143	0.9
3	0.143	0.001	0.000143	0.009
4	0.143	0.000001	0.00000143	0.00009
5	0.143	0.000001	1.43E-08	0.000009
6	0.143	0.0000001	1.43E-09	0.00000009
			Sum=0.0159	Sum=1

LARGE-SCALE VALIDATION WITH PUBLIC DATA

- Confirming NOCIt meets predetermined expectations
 - Unimodal distributions
 - The distribution should be peaked in one location
 - Precision
 - The apex of the distribution is the same for > 95% of the samples across 3 runs
 - Accuracy
 - P(N=TrueNOC | H_d, I, E) > 1% for at least 90% samples
 - TrueNOC was confirmed by running all dilutions as single-source and confirming signal
 - Used ReSOLVIt to set up a lab pipeline with LOD=1
 - Comparison
 - NOCIt outperformed current procedures
 - Robustness:
 - Resilient to sloping i.e., degradation/inhibition effects
 - Works under different contexts

PUBLIC MIXTURE DATA WITH LOD=1 ARE AVAILABLE

- 815 PROVEDIt samples (<u>www.lftdi.com</u>)
 - GlobalFiler samples (29 cycles; 25 sec 3500 Genetic Analyzer)

815 GlobalFiler [®] samples used to validate NOCIt									
NOC	1	2	3	4	5				
No. Samples	100	193	170	186	166				
Tot. Template Mass (ng)	0.5 – 0.0078	0.75 – 0.03	0.75 – 0.045	0.75 – 0.06	0.75 – 0.075				
Contributor Ratio	N/A	1:1 - 1:9	1:1:1 – 1:9:9	1:1:1:1 – 1:9:9:1	1:1:1:1:1 – 1:9:9:9:1				

VISUAL EXPLORATION IS AIDED BY STACKED PLOTS

n

NOCIT GIVES UNIMODAL DISTRIBUTIONS

- (A) Stacked Plots of APP(*n*) using *Condition* 1 and the APP for *n*= (white bar)0; (■)1; (■)2; (■)3; (■)4; and (■) 5; and (■) 6. X-axis is sample number.
- (B) Pie Chart depicting percentage of samples resulting in one, two or three $APP(n) \ge 0.001$.

Criterion: The distribution should be peaked in one location (at one n)

Results: Distribution was always unimodal in that there was no instance where the probability was high for small values of *n*, low for medium *n* values and then high for large *n*.

No sample gave more than 3 $P(N = n|E) \ge 0.001$

NOCIT IS PRECISE ACROSS RUNS

APP Range. Record maxP(n) from Run 1 and determine max delta at that n. P(2)R1= 0.95, R2=0.86, R3=0.89. Range=(0.95-0.86)=0.09. Tells us if maxP(n) is changing.

Criterion: The distribution's apex located at the same n for > 95% of the samples across 3 runs

Results: 95.8% of the samples had repeatable distributions across 3 runs

NOCIT IS ACCURATE, OUTPERFORMING CURRENT PROCEDURES

Proportion of samples giving $P(N = TrueNOC|E) \ge \alpha$, and proportion of samples for which (----) MAC and (--) MLE (H. Haned, et al., J Forensic Sci 56(1) (2011)) estimates equaled TrueNOC

Criterion: $P(N = TrueNOC|E) \ge 1\%$ for at least 90% samples **Results:** 92.5% of the samples gave $P(N = TrueNOC|H_d, I, E) \ge 1\%$

Criterion: NOCIt must outperform current procedures Results: NOCIt performance equals or exceeds current procedures at all α

NOCIT IS ROBUST ACROSS CONTEXTS AND DNA

Criterion: Resilient to sloping – i.e., degradation/inhibition effects

Results: Pvalue of 0.310 suggests sloping [β] does not significantly affect probability of including TrueNOC when α =0.001 (or 0.5) **Criterion:** Works under different contexts **Results:** Most apexes shifted when a known contributor was assumed and it was the minor

SUMMARY

- NOClt reports P(N = n | E) i.e., the posterior distribution for all n up to 6
- Supports pipelines that do not apply default or subjective n, or automatic P(N = n | E)
- Helps target n with non-negligible P(N = n|E)

Engineered to use all data (even noise)

Full descriptions in:

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

A large-scale validation of NOCIt's *a posteriori* probability of the number of contributors and its integration into forensic interpretation pipelines

Chack for

ELSEVIER

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

Research paper

The a posteriori probability of the number of contributors when conditioned on an assumed contributor

Catherine M. Grgicak^{a,b,*}, Slim Karkar^b, Xia Yearwood-Garcia^c, Lauren E. Alfonse^c, Ken R. Duffy^d, Desmond S. Lun^{b,e,f}

FUNDING, COLLABORATORS & STUDENTS

This work was partially supported by **NIJ2011-DN-BX-K558**; **NIJ2012-DN-BX-K050**; **NIJ2014-DN-BX-K026** awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice and **W911-NF-14-C-0096** from the Department of Defense. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not reflect those of the Departments of Justice or Defense.

