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DNA MIXTURES AND NUMBER OF CONTRIBUTORS (NOC)

Data NoC WoE

PROVEDIt: 31_32-1;1-M2a-0.126GF
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NOCIT GIVES P(N=n|HD,I,E) FOR ALL N

Why P(N=n|Hd,I,E)? 

𝐋𝐑 = 

𝑛

𝑃 𝐸 𝐻𝑝, 𝑁 = 𝑛, 𝐼

𝑃 𝐸 𝐻𝑑 , 𝑁 = 𝑛, 𝐼
𝑃 𝑁 = 𝑛 𝐻𝑑 , 𝐼, 𝐸

LRE|n,I Pn|E,I

The 𝐋𝐑 is the weighted average of the n-specific LRs, for all n 

𝐋𝐑 = 𝐿𝑅𝐸|𝑛=𝟏,𝐼𝑃𝑛=𝟏|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟐,𝐼𝑃𝑛=𝟐|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟑,𝐼𝑃𝑛=𝟑|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟒,𝐼𝑃𝑛=𝟒|𝐸,𝐼+ 𝐿𝑅𝐸|𝑛=𝟓,𝐼𝑃𝑛=𝟓|𝐸,𝐼+….

NOCIt, therefore, meets 2 aims:

• Narrows n ranges by informing what n are 

associated with negligible Pn|E,I 

• Supports a process that does not apply default n 

or automatic Pn|E,I 

NOCIt gives Pn|E,I 

 for all possible n

NOCIt



NOCIT DETERMINES P(N=n|HD,I,E)
Why P(N=n|Hd,I,E) aka Pn|E,I?
Contexts between LRE|n,I and Pn|E,I are consistent

𝐋𝐑 = 𝐿𝑅𝐸|𝑛=𝟏,𝐼𝑃𝑛=𝟏|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟐,𝐼𝑃𝑛=𝟐|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟑,𝐼𝑃𝑛=𝟑|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟒,𝐼𝑃𝑛=𝟒|𝐸,𝐼+ 𝐿𝑅𝐸|𝑛=𝟓,𝐼𝑃𝑛=𝟓|𝐸,𝐼+….

NOCIt, therefore, meets a 3rd aim:

• Determines Pn|E,I  using the same 
context as assigned to LRE|n,I

P
n

|E
,I

𝐋𝐑 = 𝐿𝑅𝐸|𝑛=𝟐,𝐼𝑃𝑛=𝟐|𝐸,𝐼 + 𝐿𝑅𝐸|𝑛=𝟑,𝐼𝑃𝑛=𝟑|𝐸,𝐼

       = 10−130.1 + 10240.9
       = 1024

I=assumed 

person

𝐿𝑅𝐸|𝑛=𝟐,𝐼

𝐿𝑅𝐸|𝑛=3,𝐼



NOCIT DETERMINES P(N=n|HD,I,E)

What is P(N=n|Hd,I,E)? 
It is the posterior probability of n contributors given the data and a 

context

𝑃(𝑁 = 𝑛|𝐻𝑑 , 𝐼, 𝐸) =
𝑃(𝐸|𝐻𝑑 , 𝐼, 𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛|𝐻𝑑 , 𝐼)

σ𝑛 𝑃(𝐸|𝐻𝑑 , 𝐼, 𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛|𝐻𝑑 , 𝐼)

Probability of the 

data given n 

randomers

Probability that n 

people contributed 

(before seeing data 

– PRIOR)

Probability of n 

contributors after 

considering the data 

- POSTERIOR

𝑃(𝑁 = 𝑛|𝐸) =
𝑃(𝐸|𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛)

σ𝑛 𝑃(𝐸|𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛)

For ease, drop I and Hd going forward
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NOCIT DETERMINES P(N=n|HD,I,E)

What is P(N=n|E) graphically? 

Before seeing 

data, set 𝑃(𝑁 =
𝑛) for all 𝑛 – e.g., 

1/7 for 𝑛 =0 to 6
NOCIt, 

P(E|N=n)
0
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)

n

Data, E

𝑃(𝑁 = 𝑛|𝐸) =
𝑃(𝐸|𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛)

σ𝑛 𝑃(𝐸|𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛)

0     1      2    3     4    5      6 0     1      2    3    4    5     6
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What is P(N=n|E) numerically? 

n 𝐏(𝐍 = 𝐧) 𝐏(𝐄|𝐍 = 𝐧) 𝐏(𝐄|𝐍 = 𝐧) ∙ 𝐏(𝐍 = 𝐧) 𝐏(𝐍 = 𝐧|𝐄)

0 1/7=0.143 0.00001 0.00000143
=0.0000014/0.0159

=0.00009

1 0.143 0.01 0.00143 0.09

2 0.143 0.1 0.0143 0.9

3 0.143 0.001 0.000143 0.009

4 0.143 0.000001 0.000000143 0.000009

5 0.143 0.0000001 1.43E-08 0.0000009

6 0.143 0.00000001 1.43E-09 0.000000009

Sum=0.0159 Sum=1

𝑃(𝑁 = 𝑛|𝐸) =
𝑃(𝐸|𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛)

σ𝑛 𝑃(𝐸|𝑁 = 𝑛) ∙ 𝑃(𝑁 = 𝑛)

Illustrative example:



LARGE-SCALE VALIDATION WITH PUBLIC DATA 
• Confirming NOCIt meets predetermined expectations

• Unimodal distributions
• The distribution should be peaked in one location

• Precision
• The apex of the distribution is the same for > 95% of the samples across 3 runs

• Accuracy
• P(N=TrueNOC|Hd,I,E) >1% for at least 90% samples

• TrueNOC was confirmed by running all dilutions as single-source and confirming signal

• Used ReSOLVIt to set up a lab pipeline with LOD=1

• Comparison 
• NOCIt outperformed current procedures

• Robustness: 
• Resilient to sloping – i.e., degradation/inhibition effects

• Works under different contexts 



PUBLIC MIXTURE DATA WITH LOD=1 ARE AVAILABLE   

• 815 PROVEDIt samples (www.lftdi.com)

• GlobalFiler samples (29 cycles; 25 sec 3500 

Genetic Analyzer)

815 GlobalFiler® samples used to validate NOCIt

NOC 1 2 3 4 5

No. Samples 100 193 170 186 166

Tot. Template 
Mass (ng)

0.5 – 0.0078 0.75 – 0.03 0.75 – 0.045 0.75 – 0.06 0.75 – 0.075

Contributor 
Ratio

N/A 1:1 – 1:9 1:1:1 – 1:9:9
1:1:1:1 – 
1:9:9:1

1:1:1:1:1 – 
1:9:9:9:1



0

0.2

0.4

0.6

0.8

1

1

P
(n

)

0
.0

0

0
.0

0 0
.1

3

0
.4

6

0
.3

0 0
.1

2

0
.0

0

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

P
(n

)

n 10

0
.0

0

0
.0

5

0
.9

5

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
(n

)

n

Sample A

Sample B

0

0.2

0.4

0.6

0.8

1

1

P
(n

)

𝑷
(𝑵

=
𝒏

|𝑬
)

𝑷
(𝑵

=
𝒏

|𝑬
)

𝑷
(𝑵

=
𝒏

|𝑬
)

𝑷
(𝑵

=
𝒏

|𝑬
)

VISUAL EXPLORATION IS AIDED BY STACKED PLOTS



NOCIT GIVES UNIMODAL DISTRIBUTIONS

(A) Stacked Plots of APP(n) using Condition 1 and 

the APP for n= (white bar)0; (■)1; (■)2; (■)3; 

(■)4; and (■) 5; and (■) 6. X-axis is sample 

number.

(B) Pie Chart depicting percentage of samples 

resulting in one, two or three APP(n) ≥ 0.001. 

Criterion: The distribution should be peaked 

in one location (at one n)    

Results: Distribution was always unimodal in 

that there was no instance where the 

probability was high for small values of n, 

low for medium n values and then high for 

large n.

No sample gave more than 3 𝑷(𝑵 =
𝒏|𝑬) ≥0.001

𝑷
(𝑵

=
𝒏

|𝑬
)
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NOCIT IS PRECISE ACROSS RUNS

Criterion: The distribution’s apex located at 

the same n for > 95% of the samples across 

3 runs

Results: 95.8% of the samples had 

repeatable distributions across 3 runs 
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Run 1 Run 2 Run 3

APP Range. Record maxP(n) from Run 1 and determine max delta at that n. P(2)R1= 

0.95, R2=0.86, R3=0.89. Range=(0.95-0.86)=0.09. Tells us if maxP(n) is changing.

4.2%

Range= max(ΔPR1,R2; ΔPR1,R3; ΔPR2,R3)



Proportion of samples giving 𝑃(𝑁 = 𝑇𝑟𝑢𝑒𝑁𝑂𝐶|𝐸) ≥ α, and proportion of samples for which (─) 

MAC and (- -) MLE (H. Haned, et al., J Forensic Sci 56(1) (2011)) estimates equaled TrueNOC 
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NOCIT IS ACCURATE, OUTPERFORMING CURRENT 

PROCEDURES

Criterion: 𝑷 𝑵 = 𝑻𝒓𝒖𝒆𝑵𝑶𝑪 𝑬  ≥ 1% for at least 90% samples

Results: 92.5% of the samples gave 𝑷 𝑵 = 𝑻𝒓𝒖𝒆𝑵𝑶𝑪 𝑯𝒅, 𝑰, 𝑬 ≥ 𝟏%
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 ≥

α

α

Criterion: NOCIt must outperform current procedures

Results: NOCIt performance equals or exceeds current procedures at all α
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NOCIT IS ROBUST ACROSS CONTEXTS AND DNA 

QUALITIES 𝑃𝐻𝑙 = 𝜑𝑒β𝑤𝑙

β [Degree of EPG sloping]

Criterion: Resilient to sloping – i.e., 
degradation/inhibition effects

Results: Pvalue of 0.310 suggests sloping [β] 
does not significantly affect probability of 
including TrueNOC when α=0.001 (or 0.5)
Criterion: Works under different contexts 

Results: Most apexes shifted when a known 
contributor was assumed and it was the 

minor

Pvalues – multi logistic regression
Degree of Sloping [β]=0.310

Mass Smallest Cont [ng]=0.041
TrueNOC=0.514
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 𝑷

𝑵
=

𝑻
𝒓

𝒖
𝒆

𝑵
𝑶

𝑪
𝑬

 >
0

.0
0

1

-0.02 0
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SUMMARY

NOCIt reports 𝑷(𝑵 = 𝒏|𝑬) – i.e., the posterior distribution 
for all n up to 6

Supports pipelines that do not apply default or subjective n, 
or automatic 𝑷(𝑵 = 𝒏|𝑬) 

Helps target n with non-negligible 𝑷(𝑵 = 𝒏|𝑬)

Engineered to use all data (even noise)

Full descriptions in: 
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